Evolving Transferable Artificial Neural Networks for Gameplay Tasks via NEAT with Phased Searching

نویسندگان

  • Will Hardwick-Smith
  • Yiming Peng
  • Gang Chen
  • Yi Mei
  • Mengjie Zhang
چکیده

NeuroEvolution of Augmenting Topologies (NEAT) has been successfully applied to intelligent gameplay. To further improve its effectiveness, a key technique is to reuse the knowledge learned from source gameplay tasks to boost performance on target gameplay tasks. We consider this as a Transfer Learning (TL) problem. However, Artificial Neural Networks (ANNs) evolved by NEAT are usually unnecessarily complicated, which may affect their transferability. To address this issue, we will investigate in this paper the capability of Phased Searching (PS) methods for controlling ANNs’ complexity while maintaining their effectiveness. By doing so, we can obtain more transferable ANNs. Furthermore, we will propose a new Power-Law Ranking Probability based PS (PLPS) method to more effectively control the randomness during the simplification phase. Several recent PS methods as well as our PLPS have been evaluated on four carefully-designed TL experiments. Results show clearly that NEAT can evolve more transferable and structurally simple ANNs with the help of PS methods, in particular PLPS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Network Topology in Computer-Aided Detection Schemes Using Phased Searching with NEAT in a Time-Scaled Framework

In the field of computer-aided mammographic mass detection, many different features and classifiers have been tested. Frequently, the relevant features and optimal topology for the artificial neural network (ANN)-based approaches at the classification stage are unknown, and thus determined by trial-and-error experiments. In this study, we analyzed a classifier that evolves ANNs using genetic al...

متن کامل

Efficient Reinforcement Learning Through Evolving Neural Network Topologies

Neuroevolution is currently the strongest method on the pole-balancing benchmark reinforcement learning tasks. Although earlier studies suggested that there was an advantage in evolving the network topology as well as connection weights, the leading neuroevolution systems evolve fixed networks. Whether evolving structure can improve performance is an open question. In this article, we introduce...

متن کامل

Competitive Coevolution through Evolutionary Complexification

Two major goals in machine learning are the discovery of complex multidimensional solutions and continual improvement of existing solutions. In this paper, we argue that complexification, i.e. the incremental elaboration of solutions through adding new structure, achieves both these goals. We demonstrate the power of complexification through the NeuroEvolution of Augmenting Topologies (NEAT) me...

متن کامل

Modelling of Conventional and Severe Shot Peening Influence on Properties of High Carbon Steel via Artificial Neural Network

Shot peening (SP), as one of the severe plastic deformation (SPD) methods is employed for surface modification of the engineering components by improving the metallurgical and mechanical properties. Furthermore artificial neural network (ANN) has been widely used in different science and engineering problems for predicting and optimizing in the last decade. In the present study, effects of conv...

متن کامل

Efficient Evolution of Neural Network Topologies

Neuroevolution, i.e. evolving artificial neural networks with genetic algorithms, has been highly effective in reinforcement learning tasks, particularly those with hidden state information. An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT) that outpe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017